
10/18/22, 11:37 AM The Evolution of Go

https://go.dev/talks/2015/gophercon-goevolution.slide#8 9/32

Date: Sun, 23 Sep 2007 23:33:41 -0700Date: Sun, 23 Sep 2007 23:33:41 -0700
From: "Robert Griesemer" <gri@google.com>From: "Robert Griesemer" <gri@google.com>
To: "Rob 'Commander' Pike" <r@google.com>, ken@google.comTo: "Rob 'Commander' Pike" <r@google.com>, ken@google.com
Subject: prog lang discussionSubject: prog lang discussion
......
*** General:*** General:
Starting point: C, fix some obvious flaws, remove crud, add a few missing featuresStarting point: C, fix some obvious flaws, remove crud, add a few missing features
 - no includes, instead: import - no includes, instead: import
 - no macros (do we need something instead?) - no macros (do we need something instead?)
 - ideally only one file instead of a .h and .c file, module interface - ideally only one file instead of a .h and .c file, module interface
should be extracted automaticallyshould be extracted automatically
 - statements: like in C, though should fix 'switch' statement - statements: like in C, though should fix 'switch' statement
 - expressions: like in C, though with caveats (do we need ',' expressions?) - expressions: like in C, though with caveats (do we need ',' expressions?)
 - essentially strongly typed, but probably w/ support for runtime types - essentially strongly typed, but probably w/ support for runtime types
 - want arrays with bounds checking on always (except perhaps in 'unsafe mode'-see section on GC) - want arrays with bounds checking on always (except perhaps in 'unsafe mode'-see section on GC)
 - mechanism to hook up GC (I think that most code can live w/ GC, but for a true systems - mechanism to hook up GC (I think that most code can live w/ GC, but for a true systems
 programming language there should be mode w/ full control over memory allocation) programming language there should be mode w/ full control over memory allocation)
 - support for interfaces (differentiate between concrete, or implementation types, and abstract, - support for interfaces (differentiate between concrete, or implementation types, and abstract,
 or interface types) or interface types)
 - support for nested and anonymous functions/closures (don't pay if not used) - support for nested and anonymous functions/closures (don't pay if not used)
 - a simple compiler should be able to generate decent code - a simple compiler should be able to generate decent code
 - the various language mechanisms should result in predictable code - the various language mechanisms should result in predictable code
......

