
Auto Sync Local Changes to Remote
Using rsync
Whenever I’m working on a new site, it’s so incredibly tedious to change a few files,

manually upload your changes via SFTP/SSH (if you’re still using FTP, shame on you),

reload your browser, check those changes, and repeat another 150+ times until you
finally get it right.

For a while, I had a fairly good system where I would use WinSCP to auto-sync my

changes to my production box using their “Keep Synchronized” feature. The problem is

that WinSCP is only for Windows, not OS X. As a workaround, I installed WinSCP on a
Windows VM, made my Mac filesystem visible to the VM, and would have WinSCP

reflect those edits while I made code changes in Sublime on the Mac side.

Obviously this isn’t a great solution, but it did the job. I soon got tired of having to spin

up the VM everytime I wanted to work on a project, and I found myself eating through
battery more quickly running two operating systems at once (making working remotely

difficult, because I never have a charger).

I searched around for a native OS X solution that would do a better job. There isn’t. At

least, not something that does it well. And not for free. I’m a cheapskate.

Through some digging, I discovered a command line solution. It’s a combination of

rsync and fswatch. More or less, this is how I’ve implemented it:

fswatch is a great little tool that uses the Mac OS X FSEvents API to monitor a directory

for changes. When a change event about any file or directory is received, a user-
specified bash script is executed. I use fswatch to watch changes on my local project

directory, and then invoke a bash script whenever a change event is received. A

“change” includes file/directory creations, edits, and deletes. The bash script then calls

rsync to push the changes.

If you’re not familiar with rsync, you should be. It works similarly to robocopy or xcopy,

but minimizes the amount of data sent over the line by doing small, differential

changes. It copies files via SSH.

https://winscp.net/eng/download.php
https://github.com/alandipert/fswatch
https://rsync.samba.org/

Most will already have rsync installed by default on their computer, but fswatch won’t

be. You can either compile and install the source from scratch, or just grab it via

Homebrew or MacPorts:

MacPorts
$ port install fswatch

Homebrew
$ brew install fswatch

Now, we can combine both utilities like so:

fswatch -o /Users/brycematheson/Sites | xargs -n1 -I{} ./sync.sh

For now, you can ignore the xargs -n1 -I{} part. Just know that it works. What we

really want to pay attention to is the fswatch -o /Users/brycematheson/Sites part.
We’re telling fswatch to keep an eye on the “Sites” directory, and then run the “sync.sh”

bash script, whenever a change is detected. “sync.sh” looks like this:

rsync -r -a -v -e "ssh -l root" --exclude "/phpmyadmin" --exclude "/images"
/Users/brycematheson/Sites/mysite/ 124.18.106.212:/var/www/public_html
afplay "/System/Library/Sounds/Blow.aiff"

The command above will copy the source directory of

“/Users/brycematheson/Sites/mysite/” to “/var/www/public_html”, excluding the

“phpmyadmin” and “images” folders. It will also log in via the username “root” at the IP
address of 124.18.106.212. Note that the source directory ends in a slash, but

the destination directory does not. This is crucial, otherwise rsync will give you

fits.

I would highly recommend setting up private/public SSH keys allowing you to use
rsync without having to enter in a password each time.

Each time rsync successfully copies files to your destination, you’ll be greeted with a

short sound, just making it easier to audibly know that a change has happened.

https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys--2

That’s it! Happy coding with auto-sync.

